In today’s rapidly evolving digital landscape, cyber threats are becoming increasingly sophisticated and elusive. Attackers employ advanced techniques to infiltrate systems, often bypassing traditional security measures. For security professionals, this presents a significant challenge: how can we defend against threats that are designed to evade detection? The answer lies in integrating data science with modern security practices.


Recommended experience
What you'll learn
Explore the threat hunting lifecycle and how ML augments hypothesis-driven investigation.
Analyze raw log data by cleaning, enriching, and visualizing it using Pandas, Seaborn, and Matplotlib in Jupyter.
Apply anomaly detection techniques such as Isolation Forest and DBSCAN on telemetry data.
Design and execute a complete ML-based hunt in Splunk and Jupyter to detect suspicious behavior.
Skills you'll gain
- Machine Learning Methods
- Applied Machine Learning
- Cyber Threat Hunting
- Automation
- Splunk
- Threat Detection
- Pandas (Python Package)
- Threat Management
- Jupyter
- MLOps (Machine Learning Operations)
- Anomaly Detection
- Security Information and Event Management (SIEM)
- Scikit Learn (Machine Learning Library)
- Data Science
- Data Analysis
- Cybersecurity
Details to know

Add to your LinkedIn profile
December 2025
4 assignments
See how employees at top companies are mastering in-demand skills

There are 6 modules in this course
In this course, you’ll learn how to combine threat hunting fundamentals with data science techniques to uncover hidden threats that traditional security tools often miss. You’ll work with real log data, build hunting hypotheses, and apply machine learning models to detect anomalies, behavioral patterns, and subtle signs of compromise across enterprise environments. Through guided instruction, hands-on labs, and practical examples using Splunk and Jupyter Notebooks, you’ll develop the skills to operationalize ML-powered threat hunts, strengthen detection workflows, and respond more effectively to advanced, evasive attackers.
What's included
1 video1 reading
In this module, you’ll explore what threat hunting really means and why it has become essential for modern security teams. We’ll break down how hunters move beyond automated tools to search for hidden or unusual activity that may signal an active compromise. You’ll learn the core concepts, terminology, and frameworks that shape effective hunting, along with the mindset of assuming adversaries may already be inside your environment. By the end, you’ll understand why proactive hunting is critical for stopping attacks early, reducing impact, and strengthening your overall detection strategy.
What's included
10 videos1 reading1 assignment1 peer review1 discussion prompt
In this module, you’ll learn how data science strengthens modern threat hunting by helping you make sense of large, noisy security datasets. We’ll walk through the essentials of cleaning and shaping log data, visualizing behaviors, and building simple machine learning models to spot anomalies. You’ll get hands-on practice with Python tools like pandas, scikit-learn, and Jupyter Notebooks, and see how these techniques feed into SIEM platforms such as Splunk and Elastic. By the end, you’ll understand how data science supports faster detection, smarter investigations, and repeatable, automated hunting workflows.
What's included
10 videos1 reading1 assignment1 peer review1 discussion prompt
In this module, you’ll explore the unsupervised machine learning techniques that power modern anomaly detection in security environments. We’ll break down how models like Isolation Forest, DBSCAN, Z-Score Analysis, and One-Class SVM uncover unusual patterns without relying on labeled data. You’ll practice applying these algorithms to real-world scenarios such as suspicious logins, odd network traffic, and unusual system behavior. By the end, you’ll understand how these ML methods help you surface hidden threats that traditional rules often overlook.
What's included
10 videos1 reading1 assignment1 peer review1 discussion prompt
In this module, you’ll learn how to turn machine learning models and analytical techniques into practical, repeatable threat-hunting workflows. We’ll walk through how to ingest and prepare data in Splunk, write SPL for clean feature inputs, and build detection notebooks that analyze and score events in Jupyter. You’ll also see how both platforms work together to run full end-to-end hunts, from data extraction to investigation. By the end, you’ll be able to operationalize ML-driven detections and apply them directly to real security telemetry.
What's included
10 videos1 reading1 assignment1 peer review1 discussion prompt
In this wrap-up module, you’ll bring all your threat-hunting skills together by building a complete anomaly-based detection workflow using Splunk and Jupyter. This final project puts your log analysis, SPL queries, and ML techniques into practice, showing your ability to uncover hidden threats, visualize suspicious behavior, and map findings to ATT&CK. It’s your chance to demonstrate real-world readiness and apply everything you’ve learned across the course.
What's included
1 video1 peer review
Instructors


Offered by
Why people choose Coursera for their career





Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
More questions
Financial aid available,

